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Abstract
Introduction: Initial macrophage response to biostimulatory substances is key in de-
termining the subsequent behavior of fibroblasts and the organization of newly syn-
thesized collagen. Though histological studies suggest that calcium hydroxylapatite 
(CaHA) filler initiates a regenerative healing response with collagen and elastin depo-
sition similar to natural, healthy tissue rather than an inflammatory response with 
fibrosis, the relative activity of macrophages stimulated by CaHA, as well as how this 
activity compares to that induced by other biostimulatory fillers, has not been ex-
plored. The aim of the study is to characterize the in vitro macrophage response to 
two biostimulory fillers, CaHA and PLLA (poly-L lactic acid), and to evaluate their 
inflammatory potential.
Methods: Primary human macrophages were incubated with two dilutions (1:50 and 
1:100) of commercially available CaHA or PLLA. After 24 h incubation, an inflamma-
tion array was used to screen for the expression of 40 cytokines, released by mac-
rophages. ELISA was used to confirm array results.
Results: Four cytokines were significantly upregulated in M1 macrophages incubated 
with PLLA compared to both unstimulated controls and CaHA: CCL1 (p < 0.001), 
TNFRII (p < 0.01), MIP-1α (p < 0.05), and IL-8 (p < 0.001). In M2 macrophages, MIP-1α 
(p < 0.01) and MIP-1β (p < 0.01) were significantly upregulated by PLLA compared to 
CaHA and unstimulated controls.
Conclusion: Together, these findings indicate that the CaHA mode of action is a non-
inflammatory response while PLLA initiates expression of several cytokines known 
to play a role in inflammation. Our study supports the concept that these two “bi-
ostimulatory” fillers follow distinct pathways and should be considered individually 
with regard to mechanism of action.
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1  |  INTRODUC TION

Calcium hydroxylapatite (CaHA, Radiesse®; Merz North America, 
Raleigh, NC) is a biocompatible, biodegradable, and resorbable biostim-
ulatory filler consisting of calcium hydroxylapatite (CaHA) microspheres 
(25–45 μm diameter) suspended in a 70% aqueous carboxymethylcel-
lulose gel carrier. Approved indications include moderate-to-severe fa-
cial wrinkles, such as nasolabial folds and marionette lines; enhancing 
fullness of the cheeks and other facial contours; improving volume in 
hands; and improvement of jawline contour.1–4 However, CaHA is often 
used off-label for revolumization of other areas of the face and body 
and is also used in a diluted form for skin tightening.1,3,5 While phys-
iochemically distinct,6 in the clinic CaHA is often considered alongside 
poly-L-lactic acid (PLLA; Sculptra®, [Galderma, Lausanne, Switzerland]) 
as an option for biostimulation-based revolumization.

CaHA and PLLA differ in several regards. First, the two fillers 
are mechanistically distinct. CaHA filler provides immediate volume 
replacement via carrier carboxymethylcellulose gel, which is subse-
quently replaced over time by native collagen induced by the CaHA 
microspheres.7 This neocollagenesis maintains the volume provided 
initially by the carrier gel, and also improves skin quality and thick-
ness.8,9 In contrast, PLLA creates volume exclusively through pro-
motion of a subclinical foreign body inflammatory response, which 
promotes collagen synthesis that becomes apparent as volume over 
the course of several months.10 For PLLA, volume increases seen im-
mediately after injection are related to swelling and the suspension 
of microparticles and wane within a few hours to a few days.6

In addition, CaHA and PLLA are chemically distinct and lead to neo-
collagenesis through different pathways. Immune pathways are deter-
mined early following injection and involve differential recruitment of 
immune cells. Immediately after injection, material is surrounded by 
blood from injured vessels, lipids, sugars, ions, and proteins (e.g., albu-
min, fibrinogen, fibronectin, vitronectin, and gammaglobulins), which 
are adsorbed on the particle surface within minutes. Even at this very 
early stage, the different surface properties of CaHA and PLLA likely 
lead to attachment of distinctive collections of extracellular proteins 
and a divergence of pathways leading to neocollagenesis.11 CaHA 
particles function as a scaffold to support resident fibroblast function 
and induce pathways for multiple aspects of extracellular matrix (ECM) 
regeneration such as HA synthesis, angiogenesis, and organization of 
collagen, elastin, and proteoglycans.12 Additionally, histologic studies 
suggest minimal infiltration of inflammatory cells, potentially leading to 
restoration of normal skin structure and function.13–15

The PLLA tissue response appears to be more inflammatory in 
nature, and protein adsorption is followed by neutrophil and macro-
phage infiltration from Day 2 to Day 10 after injection. By 1 month, 
mast cells, mononuclear macrophages, foreign body cells, and 
lymphocytes surround PLLA microparticles, and as a result of this 
foreign body reaction, PLLA particles are encapsulated by more im-
mature, less organized collagen type III while more organized, and 
mature collagen type I is not found in close proximity to the PLLA 
particles or surrounding cellular infiltrate and is observed only at the 
periphery of the granulomatous reactions.6,11,16 These differential 

immune cell responses and distinct patterns of neocollagenesis sug-
gest distinct modes of action that likely occur through early diver-
gence of tissue response pathways.

Macrophage activity dictates the behavior of fibroblasts and is 
critical for the recruitment of immune cells and the signaling cas-
cades that support fibroblast migration and activity, proliferation, 
differentiation, and/or profibrotic pathways.17 In this study, the ac-
tivity of M1 and M2 macrophages and the cytokine expression pro-
file induced by CaHA and PLLA was examined in efforts to better 
understand macrophage response to these materials.

2  |  METHODS

2.1  |  Fillers and controls

CaHA (Radiesse®, Merz North America, Raleigh, NC, USA) and 
PLLA (Sculptra®, Galderma, Lausanne, Switzerland) were purchased 
and tested in 96-well culture microplate human microphage as-
says. Lipopolysaccharide (LPS) 100 ng/mL from Escherichia coli and 
human recombinant interleukin-4 (IL-4) 20 ng/mL were included as 
controls for the M1 and M2 macrophage populations, respectively. 
M1-Macrophage Generation Medium DXF was used to culture M1 
macrophages, and M2-Macrophage Generation Medium DXF was 
used to culture M2 macrophages (Promocell, Heidelberg, Germany).

2.2  |  Cell culture

M1 (hMDM-GMCSF(-)-c single donor M1 macrophages [Promocell, 
Heidelberg, Germany]) and M2 (hMDM-GMCSF(-)-c single donor M2 
macrophages [Promocell, Heidelberg, Germany]) were thawed and al-
lowed to recover for 20 min in cold medium. Cells were centrifuged 
at 350 × g for 15 min at room temperature, and the cell pellet was re-
suspended into the appropriate medium. Cell counts were adjusted 
to 100 000 cells/cm2 for M1 macrophages and 200 000 cells/cm2 for 
M2 macrophages. Cells were incubated overnight in a 96-well plate at 
37°C. The cell culture medium was changed and reduced from 150 μL/
well to 50 μL/well. At 24 h after initial plating, 100 μL of medium con-
taining filler diluted with medium (1:50 and 1:100 Radiesse; 1:50 and 
1:100 Sculptra) or corresponding volumes of medium alone were trans-
ferred into assay wells to reach a final assay volume of 150 μL/well.

2.3  |  Supernatant analysis

Cells were exposed to filler for 24 h. Supernatants were pooled and vol-
ume normalized to account for inter-well evaporation effects and then 
frozen at −80°C until analysis. Samples were centrifuged at 10 000 × g 
for 10 min and screened for 40 human cytokines using the RayBio® 
Human Inflammation Array GS3 (RayBiotech, Peachtree Corners, 
GA) according to the manufacturer's protocol. Due to the minimal ca-
pacity for these filler products to initiate significant cytokine release 
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compared to established inflammatory substances, the levels of cy-
tokine release observed were low. For this reason, in sample results 
where a trend was observed from the screening array, quantitative 
ELISA was used to confirm the presence or absence of significance 
(IL-8 [Abcam ab214030], MIP-1α [Abcam ab214569], and MIP-1β 
[Abcam ab100597]). Statistical analysis was performed using one-way 
ANOVA with the Turkey's multiple comparison test, with single pooled 
variance. All experiments were conducted at least in triplicate.

3  |  RESULTS

3.1  |  M1 macrophages

None of the 40 tested cytokines in the screening showed increased 
expression in M1 macrophages after incubation with CaHA com-
pared with the unstimulated controls. However, cultures from M1 

macrophages incubated with PLLA demonstrated significantly 
higher levels of four cytokines compared with the unstimulated con-
trol and CaHA dilutions (Figure 1): chemokine (C-C motif) ligand 1 
(CCL1), soluble tumor necrosis factor receptor II (sTNFR2), and mac-
rophage inflammatory protein alpha (MIP-1α) (Figure 1). Significance 
for MIP-1α was confirmed via ELISA, and trends for interleukin 8 
(IL-8) observed in the screening assay were evaluated with ELISA 
and shown to be significant.

Mean levels of CCL1 in the M1 macrophages after incubation with 
PLLA dilutions of 1:50 (31 880 mean fluorescence units [MFU]) and 
1:100 (27 550 MFU) were significantly higher than levels detected 
after incubation with CaHA dilutions of 1:50 (10 255 MFU) and 1:100 
(8373 MFU) (p < 0.001 and p < 0.001, respectively; Figure 1). TNFRII 
activity, indirectly measured via levels of sTNFR2, was significantly 
higher after incubation with PLLA dilution of 1:50 (12 832 MFU) 
than after incubation with CaHA dilutions of 1:50 (4877 MFU) and 
1:100 (4008 MFU) (p < 0.01 and p < 0.01, respectively). MIP-1α levels 

F I G U R E  1  Cytokine levels in M1 
macrophages after 24 h incubation with 
CaHA or PLLA identified with the human 
inflammation array.
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4  |    NOWAG et al.

F I G U R E  2  Cytokine levels in M1 
macrophages after 24 h incubation with 
CaHA or PLLA confirmed with ELISA.

F I G U R E  3  MIP-1α and MIP-1β cytokine 
levels in M2 macrophages after 24 h 
incubation with CaHA or PLLA identified 
with the human inflammation array.
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after incubation with PLLA 1:50 dilution (50 172 MFU) were signifi-
cantly higher than the control. This was confirmed via ELISA, which 
showed a significant difference in expression between CaHA 1:50 
and PLLA 1:50 (258.7 ng/mL and 387.7 ng/mL) (Figure 2). IL-8 levels 
after incubation with PLLA dilution of 1:50 (6430 ng/mL) were also 
significantly higher than levels detected after incubation with CaHA 
dilutions of 1:50 (4805 ng/mL) and 1:10 (3149 ng/mL; p < 0.001 and 
p < 0.001, respectively).

3.2  |  M2 macrophages

Similar to the results with the M1 macrophages, none of the 40 
cytokines in the screening showed increased expression after in-
cubation of M2 macrophages with CaHA compared with the un-
stimulated control. However, the MIP-1β showed significantly 
elevated expression after incubation of M2 macrophages with PLLA 
(Figure 3). Elevated levels for MIP-1β and MIP-1α were confirmed by 
ELISA (Figure 4). IL-8 was elevated for PLLA 1:50 compared to CaHA 
1:50 and controls, but this did not reach statistical significance in the 
screening assay.

Mean levels of MIP-1α after incubation with PLLA dilution of 
1:50 (3.6 ng/mL) were significantly higher than after incubation with 
CaHA dilution of 1:50 (1.7 ng/mL). MIP-1β levels after incubation 
with PLLA dilution of 1:50 (6.648 ng/mL) were significantly higher 
than after incubation with CaHA dilution of 1:50 (1.746 ng/mL).

4  |  DISCUSSION

Cytokines and chemokines comprise a large group of proteins 
that coordinate the immune response throughout the body. M1 

macrophages can phagocytose dead cells and bacteria, but also se-
crete proteins that promote the deposition of collagen, angiogenesis, 
the formation of granulation tissue, re-epithelization, and the activa-
tion of other immune cells. Previous studies have found that in vitro 
stimulation with IFN-γ and LPS of M1 macrophages induces a pro-
inflammatory cytokine production profile, including TNF-α, IL-1, and 
IL-6.18,19 In contrast, M2 macrophages respond by producing lower 
levels of pro-inflammatory cytokines such as IL-12, IL-18, and TNF-α 
and higher levels of anti-inflammatory cytokines TGF-β and IL-10, 
which suggests a more regenerative role in the healing process.18

In this preclinical study, none of the 40 cytokines tested showed 
significantly increased expression in M1 or M2 macrophages when 
incubated with CaHA beyond that exhibited by the negative control. 
In contrast, when stimulated by PLLA, 4 cytokines showed signifi-
cant elevations in M1 macrophages and 2 in M2 macrophages. These 
results suggest a low inflammatory potential for CaHA compared to 
PLLA, which is consistent with previous research that failed to iden-
tify an inflammatory response to the CaHA gel matrix.14

In this study, the cytokines found to increase in cell culture with 
M1 or M2 macrophages supplemented with PLLA, but not CaHA 
were sTNFR2, CCL1, MIP-1α, MIP-1β, and IL-8. Each of these cy-
tokines has a direct role in inflammation. sTNFR2 is cleaved upon 
activation of TNFRII and thus acts as a proxy for measurement of 
receptor activity.20 TNFRII is one of the receptors for tumor necrosis 
factor α (TNFα), an essential signaling protein in the innate and adap-
tive immune system that plays a critical role in the upregulation and 
downregulation of regulatory T-cell (Treg) activity. Evidence suggests 
that TNFRII contributes to immune modulation through cell activa-
tion and the recruitment and proliferation of immune cells.21–27 CCL1 
is a chemokine produced by activated monocytes/macrophages, T 
lymphocytes, and endothelial cells that mainly is a chemoattractant 
for monocytes/macrophages, lymphocytes, and neutrophils.28–32 
It is thought to play a major role in inflammatory processes,33 and 
given the results of the experiments in this study, PLLA may induce 
CCL1 expression by macrophage activation. MIP-1α (also known as 
CCL3) is an inflammatory, chemotactic chemokine known to be se-
creted by macrophages that recruits inflammatory cells, promotes 
wound healing, and maintains the effector immune response. Cells 
that release MIP-1α are increased at sites of inflammation and help 
to recruit macrophages, lymphocytes, and eosinophils.34,35 Like 
MIP-1α, MIP-1β (also known as CCL4) is a chemotactic chemokine 
that promotes inflammation through the use of a shared receptor, 
CCR5. CCR5 is expressed on macrophages, dendritic cells, and ac-
tivated T helper 1 cells, resulting in the recruitment of monocytes/
macrophages, natural killer cells, and T-cell populations.34,36–38 IL-8 
is widely used as a diagnostic marker for traumatic, inflammatory 
conditions and is known to contribute to tumor progression.39–41 
IL-8 is known to contribute to the induction of chemotaxis by neu-
trophils, lymphocytes, monocytes, and macrophages.42,43

Taken together, these markers suggest a heightened inflamma-
tory profile for PLLA as well as a consistent absence of inflam-
matory activity for CaHA. This differential inflammatory response 
supports our current understanding of CaHA's mechanism of 

F I G U R E  4  Cytokine levels in M2 macrophages after 24 h 
incubation with CaHA or PLLA confirmed with ELISA.
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action following pathways that are different to those of PLLA, 
providing an environment that is conducive to regeneration of the 
organized architectural elements of the extracellular matrix rather 
than the encapsulation and fibroplasia type deposition of collagen 
that is seen in the foreign body response to PLLA.6,15,44 There are 
various working hypotheses to explain the apparent unique mode 
of action of CaHA that diverge from the foreign body response 
of PLLA and other biostimulatory formulations. Among these hy-
potheses are published models of CaHA acting as a calcium sink 
utilizing chemoattraction to upregulate fibroblasts,45,46 and neo-
collagenesis via direct interactions between fibroblasts and CaHA 
microspheres.47,48 Our knowledge today indicates that there are 
complex immunological pathways and interactions at play in all 
biostimulating formulations that are unique to each, as supported 
by this in vitro study. The various pathways are likely to result in 
differing outcomes changing, for example, the ratios of collagen 
types and other elements of the extracellular matrix, such as elas-
tin and glucosaminoglycans, which will ultimately influence skin 
and soft tissue structure and function. Immunological pathways 
and outcomes will, of course, also have some variation in vivo de-
pending on the genetic, aging, and possible pathological milieu in 
which they occur.

The present study revealed a differential response to these 
fillers by both M1 and M2 macrophages and offers evidence that 
an inflammatory foreign body reaction is largely absent for CaHA, 
while there are several inflammatory markers expressed by PLLA-
stimulated macrophages. Differentiating fillers on the basis of im-
mune cell activity and subsequent fibroblast activity may have 
important clinical implications. Especially as uses for biostimulatory 
fillers expand to include treatment of a wider area for skin tight-
ening and is used in multiple areas of the body, it is important to 
understand the nature of the collagen deposition induced by avail-
able treatments and to explore the impact of these differences on 
clinical outcomes in future studies. This fascinating area of research 
requires further study to elucidate these pathways and provide the 
data that will enable clinicians to select appropriate interventions 
tailored to their individual patients.

5  |  CONCLUSION

Cytokine levels in human M1 and M2 macrophages after incubation 
with CaHA were similar to controls, indicating that CaHA has a non-
inflammatory potential. Together with previous histological stud-
ies that indicate CaHA does not initiate an inflammatory response, 
this study provides further evidence to support the hypothesis that 
CaHA's mode of action follows a more regenerative pathway, and 
PLLA follows a more inflammatory foreign body response.
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